Upper bounds on the minimum distance of spherical codes
نویسندگان
چکیده
We use linear programming techniques to obtain new upper bounds on the maximal squared minimum distance of spherical codes with fixed cardinality. Functions Qj(n, s) are introduced with the property that Qj(n, s) < 0 for some j > m iff the Levenshtein bound Lm(n, s) on A(n, s) = max{|W | : W is an (n, |W |, s) code} can be improved by a polynomial of degree at least m+1. General conditions on the existence of new bounds are presented. We prove that for fixed dimension n ≥ 5 there exist a constant k = k(n) such that all Levenshtein bounds Lm(n, s) for m ≥ 2k− 1 can be improved. An algorithm for obtaining new bounds is proposed and discussed.
منابع مشابه
On Upper Bounds for Minimum Distances and Covering Radius of Non-binary Codes
We consider upper bounds on two fundamental parameters of a code; minimum distance and covering radius. New upper bounds on the covering radius of non-binary linear codes are derived by generalizing a method due to S. Litsyn and A. Tiett avv ainen 10] and combining it with a new upper bound on the asymptotic information rate of non-binary codes. The new upper bound on the information rate is an...
متن کاملOn Linear Programming Bounds for Spherical Codes and Designs
We investigate universal bounds on spherical codes and spherical designs that could be obtained using Delsarte’s linear programming methods. We give a lower estimate for the LP upper bound on codes, and an upper estimate for the LP lower bound on designs. Specifically, when the distance of the code is fixed and the dimension goes to infinity, the LP upper bound on codes is at least as large as ...
متن کاملTight Bounds on the Minimum Euclidean Distance for Block Coded Phase Shift Keying
We present upper and lower bounds on the minimum Euclidean distance dEmin(C) for block coded PSK. The upper bound is an analytic expression depending on the alphabet size q, the block length n and the number of codewords jCj of the code C. This bound is valid for all block codes with q 4 and with medium or high rate codes where jCj > (q=3). The lower bound is valid for Gray coded binary codes o...
متن کاملCombinatorial analysis of the minimum distance of turbo codes
In this paper, new upper bounds on the maximum attainable minimum Hamming distance of Turbo codes with arbitrary — including the best — interleavers are established using a combinatorial approach. These upper bounds depend on the interleaver length, on the code rate and on the scramblers employed in the encoder. Examples of the new bounds for particular Turbo codes are given and discussed. The ...
متن کاملGeneralized upper bounds on the minimum distance of PSK block codes
This paper generalizes previous optimal upper bounds on the minimum Euclidean distance for phase shift keying (PSK) block codes, that are explicit in three parameters: alphabet size, block length and code size. The bounds are primarily generalized from codes over symmetric PSK to codes over asymmetric PSK and also to general alphabet size. Furthermore, block codes are optimized in the presence ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE Trans. Information Theory
دوره 42 شماره
صفحات -
تاریخ انتشار 1996